
Constraint ProgrammingIntroduction, State of the Art & Trends
Christian Schulte
cschulte@kth.se

Department of Electronic, Computer and Software Systems
School of Information and Communication Technology
KTH – Royal Institute of Technology
Sweden

2007-02-22 Christian Schulte, ICT, KTH 2

Talk Overview
� What is Constraint Programming?

Sudoku is Constraint Programming� ... more later

Sudoku
...is Constraint Programming!

2007-02-22 Christian Schulte, ICT, KTH 4

Sudoku

� Assign blank fields digits such that:
digits distinct per rows, columns, blocks

2

9

9

52

6

37

96

2

7

1

94

36

8

86

4

8

1

2007-02-22 Christian Schulte, ICT, KTH 5

Sudoku

� Assign blank fields digits such that:
digits distinct per rows, columns, blocks

2

9

9

52

6

37

96

2

7

1

94

36

8

86

4

8

1

2007-02-22 Christian Schulte, ICT, KTH 6

Sudoku

� Assign blank fields digits such that:
digits distinct per rows, columns, blocks

2

9

9

52

6

37

96

2

7

1

94

36

8

86

4

8

1

2007-02-22 Christian Schulte, ICT, KTH 7

Sudoku

� Assign blank fields digits such that:
digits distinct per rows, columns, blocks

2

9

9

52

6

37

96

2

7

1

94

36

8

86

4

8

1

2007-02-22 Christian Schulte, ICT, KTH 8

Block Propagation

� No field in block can take digits 3,6,8

36

8

2007-02-22 Christian Schulte, ICT, KTH 9

Block Propagation

� No field in block can take digits 3,6,8� propagate to other fields in block� Rows and columns: likewise

1,2,4,5,7,91,2,4,5,7,91,2,4,5,7,9

361,2,4,5,7,9

1,2,4,5,7,981,2,4,5,7,9

2007-02-22 Christian Schulte, ICT, KTH 10

Propagation

� Prune digits from fields such that:
digits distinct per rows, columns, blocks

2

9

9

52

6

37

96

2

7

1

94

36

8

86

4

8

1

1,2,3,4,5,6,7,8,9

2007-02-22 Christian Schulte, ICT, KTH 11

Propagation

� Prune digits from fields such that:
digits distinct per rows, columns, blocks

2

9

9

52

6

37

96

2

7

1

94

36

8

86

4

8

1

1,3,5,6,7,8

2007-02-22 Christian Schulte, ICT, KTH 12

Propagation

� Prune digits from fields such that:
digits distinct per rows, columns, blocks

2

9

9

52

6

37

96

2

7

1

94

36

8

86

4

8

1

1,3,5,6,7

2007-02-22 Christian Schulte, ICT, KTH 13

Propagation

� Prune digits from fields such that:
digits distinct per rows, columns, blocks

2

9

9

52

6

37

96

2

7

1

94

36

8

86

4

8

1

1,3,5,6

2007-02-22 Christian Schulte, ICT, KTH 14

Iterated Propagation

� Iterate propagation for rows, columns, blocks� What if no assignment: search... later

2

9

9

52

6

37

96

2

7

1

94

36

8

86

4

8

1

2007-02-22 Christian Schulte, ICT, KTH 15

Sudoku is Constraint Programming

� Modelling: variables, values, constraints� Solving: propagation, search

2

9

9

52

6

37

96

2

7

1

94

36

8

86

4

8

1

� Variables: fields� take values: digits� maintain set of
possible values� Constraints: distinct� relation among
variables

2007-02-22 Christian Schulte, ICT, KTH 16

Constraint Programming� Variable domains� finite domain integer, finite sets, multisets, intervals, ...� Constraints� distinct, arithmetic, scheduling, graphs, ...� Solving� propagation, branching, exploration, ...� Modelling� variables, values, constraints, heuristics, symmetries, ...

2007-02-22 Christian Schulte, ICT, KTH 17

Remainder Overview� Key ideas and principles� constraint propagation� search: branching and exploration� Why does constraint programming matter� State of the art and trends� Excursions� constraint propagation revisited� scheduling resources� strong propagation

Key Ideas and Principles

2007-02-22 Christian Schulte, ICT, KTH 19

Running Example: SMM� Find distinct digits for letters, such that

MONEY= MORE+ SEND

2007-02-22 Christian Schulte, ICT, KTH 20

Constraint Model for SMM� Variables: S,E,N,D,M,O,R,Y ∈ {0,…,9}� Constraints:distinct(S,E,N,D,M,O,R,Y)1000×S+100×E+10×N+D+ 1000×M+100×O+10×R+E= 10000×M+1000×O+100×N+10×E+YS≠0 M≠0

2007-02-22 Christian Schulte, ICT, KTH 21

Solving SMM� Find values for variables

such that

all constraints satisfied

2007-02-22 Christian Schulte, ICT, KTH 22

Finding a Solution� Compute with possible values � rather than enumerating assignments� Prune inconsistent values� constraint propagation� Search� branch: define search tree� explore: explore search tree for solution

Constraint Propagation

2007-02-22 Christian Schulte, ICT, KTH 24

Important Concepts� Constraint store� Propagator� Constraint propagation

2007-02-22 Christian Schulte, ICT, KTH 25

Constraint Store

� Maps variables to possible values

x∈{3,4,5} y∈{3,4,5}

2007-02-22 Christian Schulte, ICT, KTH 26

Constraint Store

� Maps variables to possible values� Others: finite sets, intervals, trees, ...

x∈{3,4,5} y∈{3,4,5}

finite domain constraints

2007-02-22 Christian Schulte, ICT, KTH 27

Propagators� Implement constraintsdistinct(x1,…,xn)x + 2×y = z

2007-02-22 Christian Schulte, ICT, KTH 28

Propagators

� Amplify store by constraint propagation

x∈{3,4,5} y∈{3,4,5}

x≥y y>3

2007-02-22 Christian Schulte, ICT, KTH 29

Propagators

� Amplify store by constraint propagation

x∈{3,4,5} y∈{3,4,5}

x≥y y>3

2007-02-22 Christian Schulte, ICT, KTH 30

Propagators

� Amplify store by constraint propagation

x∈{3,4,5} y∈∈∈∈{4,5}

x≥y y>3

2007-02-22 Christian Schulte, ICT, KTH 31

Propagators

� Amplify store by constraint propagation

x∈{3,4,5} y∈∈∈∈{4,5}

x≥≥≥≥y y>3

2007-02-22 Christian Schulte, ICT, KTH 32

Propagators

� Amplify store by constraint propagation

x∈∈∈∈{4,5} y∈{4,5}

x≥≥≥≥y y>3

2007-02-22 Christian Schulte, ICT, KTH 33

Propagators

� Amplify store by constraint propagation� Disappear when done (subsumed, entailed)� no more propagation possible

x∈{4,5} y∈{4,5}

x≥y y>3

2007-02-22 Christian Schulte, ICT, KTH 34

Propagators

� Amplify store by constraint propagation� Disappear when done (subsumed, entailed)� no more propagation possible

x∈{4,5} y∈{4,5}

x≥y

2007-02-22 Christian Schulte, ICT, KTH 35

Propagation for SMM� Results in storeS∈{9} E∈{4,…,7} N∈{5,…,8} D∈{2,…,8} M∈{1} O∈{0} R∈{2,…,8} Y∈{2,…,8}� Propagation alone not sufficient!� create simpler sub-problems� branching

Search

2007-02-22 Christian Schulte, ICT, KTH 37

Important Concepts� Branching� Exploration� Branching heuristics� Best solution search

2007-02-22 Christian Schulte, ICT, KTH 38

Search: Branching

� Create subproblems with additional information� enable further constraint propagation

x∈{4,5} y∈{4,5}

x≥y y>3

x∈{4} y∈{4}

x≥y y>3

x∈{5} y∈{4,5}

x≥y y>3

x=4 x≠4

2007-02-22 Christian Schulte, ICT, KTH 39

Example Branching Strategy� Pick variable x with at least two values� Pick value n from domain of x� Branch withx=n and x≠n� Part of model

2007-02-22 Christian Schulte, ICT, KTH 40

Search: Exploration

� Iterate propagation and branching� Orthogonal: branching � exploration� Nodes:
• Unsolved • Failed • Succeeded

2007-02-22 Christian Schulte, ICT, KTH 41

SMM: Solution
MONEY= MORE+ SEND
10652= 1085+ 9567

2007-02-22 Christian Schulte, ICT, KTH 42

Heuristics for Branching� Which variable� least possible values (first-fail)� application dependent heuristic� Which value� minimum, median, maximumx=m or x≠m� split with median mx<m or x≥m� Problem specific

2007-02-22 Christian Schulte, ICT, KTH 43

SMM: Solution With First-fail
MONEY= MORE+ SEND
10652= 1085+ 9567

2007-02-22 Christian Schulte, ICT, KTH 44

Send Most Money (SMM++)� Find distinct digits for letters, such that

and MONEY maximal

MONEY= MOST+ SEND

2007-02-22 Christian Schulte, ICT, KTH 45

Best Solution Search� Naïve approach:� compute all solutions� choose best� Branch-and-bound approach:� compute first solution� add “betterness” constraint to open nodes� next solution will be “better”� prunes search space

2007-02-22 Christian Schulte, ICT, KTH 46

Branch-and-bound Search

� Find first solution

2007-02-22 Christian Schulte, ICT, KTH 47

Branch-and-bound Search

� Explore with additional constraint

2007-02-22 Christian Schulte, ICT, KTH 48

Branch-and-bound Search

� Explore with additional constraint

2007-02-22 Christian Schulte, ICT, KTH 49

Branch-and-bound Search

� Guarantees better solutions

2007-02-22 Christian Schulte, ICT, KTH 50

Branch-and-bound Search

� Guarantees better solutions

2007-02-22 Christian Schulte, ICT, KTH 51

Branch-and-bound Search

� Last solution best

2007-02-22 Christian Schulte, ICT, KTH 52

Branch-and-bound Search

� Proof of optimality

2007-02-22 Christian Schulte, ICT, KTH 53

Modelling SMM++� Constraints and branching as before� Order among solutions with constraints� so-far-best solution S,E,N,D,M,O,T,Y� current node S,E,N,D,M,O,T,Y� constraint added10000×M+1000×O+100×N+10×E+Y<10000×M+1000×O+100×N+10×E+Y

2007-02-22 Christian Schulte, ICT, KTH 54

SMM++: Branch-and-bound
MONEY= MOST+ SEND
10876= 1094+ 9782

2007-02-22 Christian Schulte, ICT, KTH 55

SMM++: All Solution Search
MONEY= MOST+ SEND
10876= 1094+ 9782

2007-02-22 Christian Schulte, ICT, KTH 56

Summary: Key Ideas and Principles� Modelling� variables with domain� constraints to state relations� branching strategy� solution ordering� Solving� constraint propagation� constraint branching� search tree exploration

applications

principles

ExcursionConstraint Propagation Revisited

2007-02-22 Christian Schulte, ICT, KTH 58

Constraint Propagation� Variables (as members of store)� feature variable domain (here: finite set of integers)� Propagators� implement constraints� Propagation loop� execute propagators until simultaneous fixpoint

2007-02-22 Christian Schulte, ICT, KTH 59

Propagator� Propagator p is procedure� implements constraint con(p)
its semantics (set of tuples)� computes on set of variables var(p)� Execution of propagator p� narrows domains of variables in var(p)� signals failure

2007-02-22 Christian Schulte, ICT, KTH 60

Propagators Are Intensional� Propagators implement narrowing� also: filtering, propagation, domain reduction� No extensional representation of con(p)� impractical in most cases (space)� Extensional representation of constraint� can be provided by special propagator� often: “element” constraint, “relation” constraint, …

2007-02-22 Christian Schulte, ICT, KTH 61

Propagator Properties� Propagator p is� correct: no solution of con(p) is removed� assignment complete: failure at latest for assignments� compatibility with search� Propagator p is� contracting: variable domains are narrowed� monotonic: application to smaller domains will result in
smaller domains than application to larger domains

2007-02-22 Christian Schulte, ICT, KTH 62

Propagation Loop� Largest simultaneous fixpoint of propagators� fixpoint: propagators cannot narrow any further� largest: no solutions lost� Guaranteed� termination: domains finite
propagators contracting� largest fixpoint: propagators monotonic

Detailed study with proofs: [Apt 00]

2007-02-22 Christian Schulte, ICT, KTH 63

Fix and Runnable Propagators� Propagator is either� fix: has reached fixpoint� runnable: not known to have reached fixpoint� Propagation loop maintains propagator sets� all propagators Prop� runnable propagators Run� initially Run := Prop

2007-02-22 Christian Schulte, ICT, KTH 64

Sketch of Propagation Loopwhile (Run ≠ ∅) {
pick and remove p from Run;

execute p;
ModVar := { x | x modified by p };

DepProp := { q | x∈var(q), x∈ModVar };
Run := join(DepProp, Run);}

2007-02-22 Christian Schulte, ICT, KTH 65

Sketch of Propagation Loopwhile (Run ≠ ∅) {
pick and remove p from Run;

execute p;
ModVar := { x | x modified by p };

DepProp := { q | x∈var(q), x∈ModVar };
Run := join(DepProp, Run);}

Loop invariant: p is fix � p∈(Prop-Run)

2007-02-22 Christian Schulte, ICT, KTH 66

Sketch of Propagation Loopwhile (Run ≠ ∅) {
pick and remove p from Run;

execute p;
ModVar := { x | x modified by p };

DepProp := { q | x∈var(q), x∈ModVar };
Run := join(DepProp, Run);}

Termination (Run=∅): p is fix � p∈Prop

2007-02-22 Christian Schulte, ICT, KTH 67

Sketch of Propagation Loopwhile (Run ≠ ∅) {
pick and remove p from Run;

execute p;
ModVar := { x | x modified by p };

DepProp := { q | x∈var(q), x∈ModVar };
Run := join(DepProp, Run);}

Ignored: failure (signaled by p)

2007-02-22 Christian Schulte, ICT, KTH 68

Implementing ModVar and DepProp� Variable-centered approach� each variable x knows dependent propagators� typically organized as list (suspension list)� propagator p included in list of x� x∈var(p)� Upon propagator creation� propagator subscribes to its variables� becomes runnable

2007-02-22 Christian Schulte, ICT, KTH 69

Propagators � Variables

� Propagators know their variables� to perform domain modifications� passed as parameters to propagator creation

propagatorpropagator

x y z

2007-02-22 Christian Schulte, ICT, KTH 70

Variables � Propagators

� Variables know dependent propagators� to perform efficient computation of dependent propagators

propagatorpropagator

x y z

2007-02-22 Christian Schulte, ICT, KTH 71

Modifying a Variable� Traverse suspension list� add propagators to Run� Optimization� mark runnable propagators� that is: propagators already in Run� Multiple variable modification by propagator� explicitly maintain ModVar (as in model)� only after propagator execution: process ModVar� suspension list traversed only once per variable

2007-02-22 Christian Schulte, ICT, KTH 72

Idempotent Propagators� Idempotent propagator� always computes fixpoint� Propagation loop perspective � no need to include in Run� more efficient: saves one invocation of propagator� Propagator perspective� must compute fixpoint itself� more efficient: specific method for computing fixpoint� might be more challenging

2007-02-22 Christian Schulte, ICT, KTH 73

Propagator Entailment� Propagator will never contribute anything� fixpoint property preserved by narrowing� Delete propagator, if entailment detected� remove from suspension-list, or� mark as dead, delegate removal to garbage collection

2007-02-22 Christian Schulte, ICT, KTH 74

Summary: Constraint Propagation Revisited� Variables� domain, suspension list� Propagators� intensional, correct, contracting, monotone, …� know variables for narrowing� Propagation loop� computes largest simultaneous fixpoint

Why Does Constraint Programming Matter

2007-02-22 Christian Schulte, ICT, KTH 76

Widely Applicable� Timetabling� Scheduling� Crew rostering� Resource allocation� Workflow planning and optimization� Gate allocation at airports� Sports-event scheduling� Railroad: track allocation, train allocation, schedules� Automatic composition of music� Genome sequencing� Frequency allocation� …

2007-02-22 Christian Schulte, ICT, KTH 77

Draws on Variety of Techniques� Artificial intelligence� basic idea, search, ... � Operations research� scheduling, flow, ...� Algorithms� graphs, matching, networks, ...� Programming languages� programmability, extensionability, ...

2007-02-22 Christian Schulte, ICT, KTH 78

Essential Aspect� Compositional middleware for combining� smart algorithmic� problem substructures

components (propagators)� scheduling� graphs� flows� …

plus� essential extra constraints

2007-02-22 Christian Schulte, ICT, KTH 79

Significance� Constraint programming identified as a
strategic direction in computer science
research

[ACM Computing Surveys, December 1996]

ExcursionScheduling Resources� Modelling� Propagation� Strong propagation

2007-02-22 Christian Schulte, ICT, KTH 81

Scheduling Resources: Problem� Tasks� duration� resource� Precedence constraints� determine order among two tasks� Resource constraints� at most one task per resource
[disjunctive, non-preemptive scheduling]

2007-02-22 Christian Schulte, ICT, KTH 82

Scheduling: Bridge Example
A3 A5A4A2

S5S5

B5

S2S2

B2

M5

P1

A1

S3S3

B3

M2

A6

S1S1

B1 M3

P2

S6S6

B6

S4

T2

B4

S4

M1

M4

T1 T4

V1

M6

T5

V2

T3

Infamous:
additional

side
constraints!

2007-02-22 Christian Schulte, ICT, KTH 83

Scheduling: Solution� Start time for each task� All constraints satisfied� Earliest completion time� minimal make-span

2007-02-22 Christian Schulte, ICT, KTH 84

Scheduling: Model� Variable for start-time of task a
start(a)� Precedence constraint: a before b

start(a) + dur(a) ≤ start(b)

2007-02-22 Christian Schulte, ICT, KTH 85

Propagating Precedence

start(a)∈{0,…,7}
start(b)∈{0,…,5}

a

b

a before b

2007-02-22 Christian Schulte, ICT, KTH 86

Propagating Precedence

start(a)∈{0,…,7}
start(b)∈{0,…,5}

a

b

a

b

a before b

start(a)∈{0,…,2}
start(b)∈{3,…,5}

2007-02-22 Christian Schulte, ICT, KTH 87

Scheduling: Model� Variable for start-time of task a

start(a)� Precedence constraint: a before b

start(a) + dur(a) ≤ start(b)� Resource constraint:

a before b
or

b before a

2007-02-22 Christian Schulte, ICT, KTH 88

Scheduling: Model� Variable for start-time of task a

start(a)� Precedence constraint: a before b

start(a) + dur(a) ≤ start(b)� Resource constraint:

start(a) + dur(a) ≤ start(b)
or

b before a

2007-02-22 Christian Schulte, ICT, KTH 89

Scheduling: Model� Variable for start-time of task a

start(a)� Precedence constraint: a before b

start(a) + dur(a) ≤ start(b)� Resource constraint:

start(a) + dur(a) ≤ start(b)
or

start(b) + dur(b) ≤ start(a)

2007-02-22 Christian Schulte, ICT, KTH 90

Reified Constraints� Use control variable b∈{0,1}
c ↔ b=1� Propagate� c holds� ⇒ propagate b=1� ¬c holds ⇒ propagate b=0� b=1 holds ⇒ propagate c� b=0 holds ⇒ propagate ¬c

2007-02-22 Christian Schulte, ICT, KTH 91

Reified Constraints� Use control variable b∈{0,1}
c ↔ b=1� Propagate� c holds� ⇒ propagate b=1� ¬c holds ⇒ propagate b=0� b=1 holds ⇒ propagate c� b=0 holds ⇒ propagate ¬c

not easy!

2007-02-22 Christian Schulte, ICT, KTH 92

Reification for Disjunction� Reify each precedence

[start(a) + dur(a) ≤ start(b)] ↔ b0=1
and

[start(b) + dur(b) ≤ start(a)] ↔ b1=1� Model disjunction

b0 + b1 ≥ 1

2007-02-22 Christian Schulte, ICT, KTH 93

Model Is Too Naive� Local view� individual task pairs� O(n2) propagators for n tasks� Global view ("global" constraints)� all tasks on resource� single propagator� smarter algorithms possible

2007-02-22 Christian Schulte, ICT, KTH 94

Example: Edge Finding� Find ordering among tasks (“edges”)� For each subset of tasks {a}∪B� assume: a before B
deduce information for a and B� assume: B before a
deduce information for a and B� join computed information� can be done in O(n2)

2007-02-22 Christian Schulte, ICT, KTH 95

Summary� Modelling� easy but not always efficient� constraint combinators (reification)� global constraints� smart heuristics� More on constraint-based scheduling
Baptiste, Le Pape, Nuijten. Constraint-based
Scheduling, Kluwer, 2001.

ExcursionStrong Propagation

2007-02-22 Christian Schulte, ICT, KTH 97

SMM: Strong Propagation
MONEY= MORE+ SEND
10652= 1085+ 9567

2007-02-22 Christian Schulte, ICT, KTH 98

Example: Distinct Propagator� Infeasible: decomposition� O(n2) disequality propagators� Naive distinct propagator� wait until variable becomes assigned� remove value from all other variables� Strong distinct propagator� only keep values appearing in a solution to constraint� essential for many problems

2007-02-22 Christian Schulte, ICT, KTH 99

Distinct Propagator: Hall Sets� Direct approach: Hall sets� Van Beek, Quimper, et. al. [CP 2004]� Set {x1, ..., xn} of variables Hall set, iff set of
values s(x1) ∪ ... ∪ s(xn) has cardinality n� Pruning� find Hall set H� prune values in H from all other variables

2007-02-22 Christian Schulte, ICT, KTH 100

Strong Distinct Propagator� Can be propagated efficiently� O(n2.5) is efficient� breakthrough: Régin, A filtering algorithm for constraints
of difference in CSPs, AAAI 1994.� Uses graph algorithms� insight on problem structure� relation between solutions of constraint and properties of
graph

2007-02-22 Christian Schulte, ICT, KTH 101

Régin's Approach� Construct a variable-value graph� bipartite graph: variable nodes � value nodes� Characterize solutions in graph� maximal matchings� Use matching theory� one matching can describe all matchings� Remove edges not representing solutions

2007-02-22 Christian Schulte, ICT, KTH 102

Variable Value Graph
x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

s(x0)={0,1}

s(x1)={1,2}

s(x2)={0,2}

s(x3)={1,3}

s(x4)={2,3,4,5}

s(x5)={5,6}

2007-02-22 Christian Schulte, ICT, KTH 103

Maximal Matching Are Solutions
x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

a(x0)=0

a(x1)=1

a(x2)=2

a(x3)=3

a(x4)=4

a(x5)=6

2007-02-22 Christian Schulte, ICT, KTH 104

Matching Theory� Edge e belongs to some matching �
for some arbitrary matching M:
either: e belongs to even

alternating path starting
at free node

or: e belongs to even
alternating cycle� [C. Berge, 1970] See Régin's paper

2007-02-22 Christian Schulte, ICT, KTH 105

Oriented Graph: Alternation
x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

2007-02-22 Christian Schulte, ICT, KTH 106

Alternating Paths…
x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

� Only free node: 6� mark 6 � x5 � mark x5� 5� mark 5 � x4� mark x4� 4� Intuition: edges
can be permuted

2007-02-22 Christian Schulte, ICT, KTH 107

Alternating Cycles…
x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

� Nodes in SCC
x0, x1, x2,

0, 1, 2 � Mark joining edges� Intuition: variables
take all values from
SCC

2007-02-22 Christian Schulte, ICT, KTH 108

All Marked Edges
x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

2007-02-22 Christian Schulte, ICT, KTH 109

Edges Removed
x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

� Remove� 1 � x3� 2 � x4� 3 � x4� Keep� x3� 3� matched!� Edge removal� value removal

2007-02-22 Christian Schulte, ICT, KTH 110

Characterising Strength: Consistency� Domain-consistent propagator for constraint� every value appears in at least one solution of constraint� strongest possible propagation� Régin's method is domain-consistent� also known as: generalized arc consistency, ...� Bounds-consistent propagator for constraint� extremal values appears in solution of convex relaxation� depends on relaxation: integer versus real� weaker but cheaper yet relevant� confusion about variants...

2007-02-22 Christian Schulte, ICT, KTH 111

Global Constraints� Reasons for globality: decomposition...� semantic: ...not possible� operational: ...less propagation� algorithmic: ...less efficiency� Plethora available� scheduling, sequencing, cardinality, sorting, circuits, ...� systematic catalogue with hundreds available...� difficult to pick the right one (consistency versus
efficiency, etc)

Trends and State of the Art

2007-02-22 Christian Schulte, ICT, KTH 113

Trends and State of The Art� Focus here� constraints for combinatorial problems

ignoring� programming languages, graphics, databases,
tractability, complexity, ...� Up-to-date overview

Handbook of Constraint Programming
Rossi, van Beek, Walsh, eds., Elsevier, 2006.

2007-02-22 Christian Schulte, ICT, KTH 114

Modelling� Symmetry breaking� Implied constraints� Variable domains� Soft constraints� Modelling languages� ...

2007-02-22 Christian Schulte, ICT, KTH 115

Symmetry Breaking� Absolutely essential� just search for single solution, ignore symmetric solutions� drastically prunes search space� without, most problems can not be solved� Key questions� how to find symmetries automatically?� class of symmetries: value, variable symmetries?� how to break them (rule out symmetric solutions)?� how many to break (all typically to expensive)?� break them statically or dynamically?� break them during search?

2007-02-22 Christian Schulte, ICT, KTH 116

Implied Constraints� Absolutely essential� find constraints that are semantically implied� yet provide essential propagation� Key questions� how to find them?� manual versus automatic?� how to propagate them?

2007-02-22 Christian Schulte, ICT, KTH 117

Variable Domains� Finite sets, multisets, intervals, ...� Often help to avoid symmetries (sets)� Typically require approximation� full set representation: exponential time and space� bounds approximation: describe by glb and lub� Key questions� total ordering for symmetry breaking?� efficient representations?� efficient and strong propagators for global constraints?

2007-02-22 Christian Schulte, ICT, KTH 118

Soft Constraints� Important to capture inconsistent models� as they tend to be in practice� Devise new framework� generalize propagation to cater for softness� Remain in same framework� propagators that propagate according to degree of
violation� ...

2007-02-22 Christian Schulte, ICT, KTH 119

Modelling Languages� Fundamental difference to LP and SAT� language has structure (global constraints)� different solvers support different constraints� In its infancy� Key questions:� what level of abstraction?� solving approach independent: LP, SAT, CP, ...?� how to map to different systems?

2007-02-22 Christian Schulte, ICT, KTH 120

Solving� Automatic solving ("black box" solvers)� Constraint-based local search� Hybrid approaches� Constraint programming systems� Global constraints� ...

2007-02-22 Christian Schulte, ICT, KTH 121

Automatic Solving� Modelling is very difficult for CP� requires lots of knowledge and tinkering� very different from SAT� How to automatize� restart search?� automatic symmetric breaking?� new idea, promising first ideas and approaches?� to which extent possible?

2007-02-22 Christian Schulte, ICT, KTH 122

Constraint-based Local Search� Local search� operate on assignments not necessarily solutions� find "good" assignments� Use constraints as abstractions to model and
solve with local search� Derive implementations automatically from
constraints� Hybrid approaches?� Very promising� check out Comet: www.comet-online.org

2007-02-22 Christian Schulte, ICT, KTH 123

Hybrid Approaches� Operations research methods� Key issue: CP poor for optimization� Key questions� relaxations to obtain bounds?� column generation?� Benders decomposition?� cuts?� Extremely important for practical problems

2007-02-22 Christian Schulte, ICT, KTH 124

Global Constraints� Ever more! Ever more?� Key questions� what are the essential primitive ones?� how to characterize them?� how to automatically get an implementation?

2007-02-22 Christian Schulte, ICT, KTH 125

Constraint Programming Systems� Essential for initial and continuing success� Two approaches� library-based: ILOG Solver, Koalog, Choco, Gecode, ...� language-based: SICStus Prolog, Eclipse, Oz, ...� Key questions� parallelism� efficiency� robustness� automatic� coverage

Summary

2007-02-22 Christian Schulte, ICT, KTH 127

Constraint Programming� Powerful approach for modelling and solving
combinatorial problems� Key aspect: middleware for� powerful algorithmic components� essential extra constraints� Key issues: modelling, propagation, search� Widely used but modelling is challenging

