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Talk Overview
� What is Constraint Programming?

Sudoku is Constraint Programming� ... more later



Sudoku
...is Constraint Programming!
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Sudoku

� Assign blank fields digits such that:
digits distinct per rows, columns, blocks
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Sudoku

� Assign blank fields digits such that:
digits distinct per rows, columns, blocks
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� Assign blank fields digits such that:
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Sudoku

� Assign blank fields digits such that:
digits distinct per rows, columns, blocks
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Block Propagation

� No field in block can take digits 3,6,8

36

8
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Block Propagation

� No field in block can take digits 3,6,8� propagate to other fields in block� Rows and columns: likewise

1,2,4,5,7,91,2,4,5,7,91,2,4,5,7,9

361,2,4,5,7,9

1,2,4,5,7,981,2,4,5,7,9
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Propagation

� Prune digits from fields such that:
digits distinct per rows, columns, blocks
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Propagation

� Prune digits from fields such that:
digits distinct per rows, columns, blocks
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Propagation

� Prune digits from fields such that:
digits distinct per rows, columns, blocks

2

9

9

52

6

37

96

2

7

1

94

36

8

86

4

8

1

1,3,5,6,7
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Propagation

� Prune digits from fields such that:
digits distinct per rows, columns, blocks

2

9

9

52

6

37

96

2

7

1

94

36

8

86

4

8

1

1,3,5,6
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Iterated Propagation

� Iterate propagation for rows, columns, blocks� What if no assignment: search... later
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Sudoku is Constraint Programming

� Modelling: variables, values, constraints� Solving: propagation, search

2

9

9

52

6

37

96

2

7

1

94

36

8

86

4

8

1

� Variables: fields� take values: digits� maintain set of 
possible values� Constraints: distinct� relation among 
variables
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Constraint Programming� Variable domains� finite domain integer, finite sets, multisets, intervals, ...� Constraints� distinct, arithmetic, scheduling, graphs, ...� Solving� propagation, branching, exploration, ...� Modelling� variables, values, constraints, heuristics, symmetries, ...
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Remainder Overview� Key ideas and principles� constraint propagation� search: branching and exploration� Why does constraint programming matter� State of the art and trends� Excursions� constraint propagation revisited� scheduling resources� strong propagation



Key Ideas and Principles
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Running Example: SMM� Find distinct digits for letters, such that

MONEY= MORE+ SEND
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Constraint Model for SMM� Variables: S,E,N,D,M,O,R,Y ∈ {0,…,9}� Constraints:distinct(S,E,N,D,M,O,R,Y)1000×S+100×E+10×N+D+         1000×M+100×O+10×R+E= 10000×M+1000×O+100×N+10×E+YS≠0 M≠0
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Solving SMM� Find values for variables

such that

all constraints satisfied
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Finding a Solution� Compute with possible values � rather than enumerating assignments� Prune inconsistent values� constraint propagation� Search� branch: define search tree� explore: explore search tree for solution



Constraint Propagation
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Important Concepts� Constraint store� Propagator� Constraint propagation
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Constraint Store

� Maps variables to possible values

x∈{3,4,5}  y∈{3,4,5}
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Constraint Store

� Maps variables to possible values� Others: finite sets, intervals, trees, ...

x∈{3,4,5}  y∈{3,4,5}

finite domain constraints
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Propagators� Implement constraintsdistinct(x1,…,xn)x + 2×y = z
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Propagators

� Amplify store by constraint propagation

x∈{3,4,5}  y∈{3,4,5}

x≥y y>3
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Propagators

� Amplify store by constraint propagation

x∈{3,4,5}  y∈{3,4,5}

x≥y y>3
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Propagators

� Amplify store by constraint propagation

x∈{3,4,5}  y∈∈∈∈{4,5}

x≥y y>3
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Propagators

� Amplify store by constraint propagation

x∈{3,4,5}  y∈∈∈∈{4,5}

x≥≥≥≥y y>3
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Propagators

� Amplify store by constraint propagation

x∈∈∈∈{4,5} y∈{4,5}

x≥≥≥≥y y>3



2007-02-22 Christian Schulte, ICT, KTH 33

Propagators

� Amplify store by constraint propagation� Disappear when done (subsumed, entailed)� no more propagation possible

x∈{4,5}  y∈{4,5}

x≥y y>3
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Propagators

� Amplify store by constraint propagation� Disappear when done (subsumed, entailed)� no more propagation possible

x∈{4,5}  y∈{4,5}

x≥y
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Propagation for SMM� Results in storeS∈{9} E∈{4,…,7} N∈{5,…,8} D∈{2,…,8} M∈{1} O∈{0} R∈{2,…,8} Y∈{2,…,8}� Propagation alone not sufficient!� create simpler sub-problems� branching



Search
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Important Concepts� Branching� Exploration� Branching heuristics� Best solution search
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Search: Branching

� Create subproblems with additional information� enable further constraint propagation

x∈{4,5}  y∈{4,5}

x≥y y>3

x∈{4}  y∈{4}

x≥y y>3

x∈{5}  y∈{4,5}

x≥y y>3

x=4 x≠4
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Example Branching Strategy� Pick variable x with at least two values� Pick value n from domain of x� Branch withx=n and x≠n� Part of model
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Search: Exploration

� Iterate propagation and branching� Orthogonal: branching � exploration� Nodes:
• Unsolved • Failed • Succeeded
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SMM: Solution
MONEY= MORE+ SEND
10652= 1085+ 9567
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Heuristics for Branching� Which variable� least possible values (first-fail)� application dependent heuristic� Which value� minimum, median, maximumx=m or x≠m� split with median mx<m or x≥m� Problem specific
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SMM: Solution With First-fail
MONEY= MORE+ SEND
10652= 1085+ 9567
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Send Most Money (SMM++)� Find distinct digits for letters, such that

and MONEY maximal

MONEY= MOST+ SEND
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Best Solution Search� Naïve approach:� compute all solutions� choose best� Branch-and-bound approach:� compute first solution� add “betterness” constraint to open nodes� next solution will be “better”� prunes search space
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Branch-and-bound Search

� Find first solution
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Branch-and-bound Search

� Explore with additional constraint
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Branch-and-bound Search

� Explore with additional constraint
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Branch-and-bound Search

� Guarantees better solutions
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Branch-and-bound Search

� Guarantees better solutions
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Branch-and-bound Search

� Last solution best
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Branch-and-bound Search

� Proof of optimality
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Modelling SMM++� Constraints and branching as before� Order among solutions with constraints� so-far-best solution S,E,N,D,M,O,T,Y� current node S,E,N,D,M,O,T,Y� constraint added10000×M+1000×O+100×N+10×E+Y<10000×M+1000×O+100×N+10×E+Y
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SMM++: Branch-and-bound
MONEY= MOST+ SEND
10876= 1094+ 9782
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SMM++: All Solution Search
MONEY= MOST+ SEND
10876= 1094+ 9782
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Summary: Key Ideas and Principles� Modelling� variables with domain� constraints to state relations� branching strategy� solution ordering� Solving� constraint propagation� constraint branching� search tree exploration

applications

principles



ExcursionConstraint Propagation Revisited
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Constraint Propagation� Variables (as members of store)� feature variable domain (here: finite set of integers)� Propagators� implement constraints� Propagation loop� execute propagators until simultaneous fixpoint
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Propagator� Propagator p is procedure� implements constraint con(p)
its semantics (set of tuples)� computes on set of variables var(p)� Execution of propagator p� narrows domains of variables in var(p)� signals failure
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Propagators Are Intensional� Propagators implement narrowing� also: filtering, propagation, domain reduction� No extensional representation of con(p)� impractical in most cases (space)� Extensional representation of constraint� can be provided by special propagator� often: “element” constraint, “relation” constraint, …
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Propagator Properties� Propagator p is� correct: no solution of con(p) is removed� assignment complete: failure at latest for assignments� compatibility with search� Propagator p is� contracting: variable domains are narrowed� monotonic: application to smaller domains will result in 
smaller domains than application to larger domains
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Propagation Loop� Largest simultaneous fixpoint of propagators� fixpoint: propagators cannot narrow any further� largest: no solutions lost� Guaranteed� termination: domains finite
propagators contracting� largest fixpoint: propagators monotonic

Detailed study with proofs: [Apt 00]
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Fix and Runnable Propagators� Propagator is either� fix: has reached fixpoint� runnable: not known to have reached fixpoint� Propagation loop maintains propagator sets� all propagators Prop� runnable propagators Run� initially Run := Prop
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Sketch of Propagation Loopwhile (Run ≠ ∅) {
pick and remove p from Run;

execute p;
ModVar := { x | x modified by p };

DepProp := { q | x∈var(q), x∈ModVar };
Run := join(DepProp, Run);}
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Sketch of Propagation Loopwhile (Run ≠ ∅) {
pick and remove p from Run;

execute p;
ModVar := { x | x modified by p };

DepProp := { q | x∈var(q), x∈ModVar };
Run := join(DepProp, Run);}

Loop invariant: p is fix  � p∈(Prop-Run)
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Sketch of Propagation Loopwhile (Run ≠ ∅) {
pick and remove p from Run;

execute p;
ModVar := { x | x modified by p };

DepProp := { q | x∈var(q), x∈ModVar };
Run := join(DepProp, Run);}

Termination (Run=∅): p is fix  � p∈Prop
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Sketch of Propagation Loopwhile (Run ≠ ∅) {
pick and remove p from Run;

execute p;
ModVar := { x | x modified by p };

DepProp := { q | x∈var(q), x∈ModVar };
Run := join(DepProp, Run);}

Ignored: failure (signaled by p)
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Implementing ModVar and DepProp� Variable-centered approach� each variable x knows dependent propagators� typically organized as list (suspension list)� propagator p included in list of x� x∈var(p)� Upon propagator creation� propagator subscribes to its variables� becomes runnable
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Propagators � Variables

� Propagators know their variables� to perform domain modifications� passed as parameters to propagator creation

propagatorpropagator

x y z
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Variables � Propagators

� Variables know dependent propagators� to perform efficient computation of dependent propagators

propagatorpropagator

x y z
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Modifying a Variable� Traverse suspension list� add propagators to Run� Optimization� mark runnable propagators� that is: propagators already in Run� Multiple variable modification by propagator� explicitly maintain ModVar (as in model)� only after propagator execution: process ModVar� suspension list traversed only once per variable
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Idempotent Propagators� Idempotent propagator� always computes fixpoint� Propagation loop perspective � no need to include in Run� more efficient: saves one invocation of propagator� Propagator perspective� must compute fixpoint itself� more efficient: specific method for computing fixpoint� might be more challenging
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Propagator Entailment� Propagator will never contribute anything� fixpoint property preserved by narrowing� Delete propagator, if entailment detected� remove from suspension-list, or� mark as dead, delegate removal to garbage collection
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Summary: Constraint Propagation Revisited� Variables� domain, suspension list� Propagators� intensional, correct, contracting, monotone, …� know variables for narrowing� Propagation loop� computes largest simultaneous fixpoint



Why Does Constraint Programming Matter
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Widely Applicable� Timetabling� Scheduling� Crew rostering� Resource allocation� Workflow planning and optimization� Gate allocation at airports� Sports-event scheduling� Railroad: track allocation, train allocation, schedules� Automatic composition of music� Genome sequencing� Frequency allocation� …
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Draws on Variety of Techniques� Artificial intelligence� basic idea, search, ... � Operations research� scheduling, flow, ...� Algorithms� graphs, matching, networks, ...� Programming languages� programmability, extensionability, ...
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Essential Aspect� Compositional middleware for combining� smart algorithmic� problem substructures 

components (propagators)� scheduling� graphs� flows� …

plus� essential extra constraints
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Significance� Constraint programming identified as a 
strategic direction in computer science 
research

[ACM Computing Surveys, December 1996]



ExcursionScheduling Resources� Modelling� Propagation� Strong propagation



2007-02-22 Christian Schulte, ICT, KTH 81

Scheduling Resources: Problem� Tasks� duration� resource� Precedence constraints� determine order among two tasks� Resource constraints� at most one task per resource 
[disjunctive, non-preemptive scheduling]



2007-02-22 Christian Schulte, ICT, KTH 82

Scheduling: Bridge Example
A3 A5A4A2

S5S5

B5

S2S2

B2

M5

P1

A1

S3S3

B3

M2

A6

S1S1

B1 M3

P2

S6S6

B6

S4

T2

B4

S4

M1

M4

T1 T4

V1

M6

T5

V2

T3

Infamous: 
additional 

side 
constraints!
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Scheduling: Solution� Start time for each task� All constraints satisfied� Earliest completion time� minimal make-span
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Scheduling: Model� Variable for start-time of task a
start(a)� Precedence constraint: a before b

start(a) + dur(a) ≤ start(b)
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Propagating Precedence

start(a)∈{0,…,7}
start(b)∈{0,…,5} 

a

b

a before b
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Propagating Precedence

start(a)∈{0,…,7}
start(b)∈{0,…,5} 

a

b

a

b

a before b

start(a)∈{0,…,2}
start(b)∈{3,…,5} 
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Scheduling: Model� Variable for start-time of task a

start(a)� Precedence constraint: a before b

start(a) + dur(a) ≤ start(b)� Resource constraint:

a before b
or

b before a
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Scheduling: Model� Variable for start-time of task a

start(a)� Precedence constraint: a before b

start(a) + dur(a) ≤ start(b)� Resource constraint:

start(a) + dur(a) ≤ start(b)
or

b before a
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Scheduling: Model� Variable for start-time of task a

start(a)� Precedence constraint: a before b

start(a) + dur(a) ≤ start(b)� Resource constraint:

start(a) + dur(a) ≤ start(b)
or

start(b) + dur(b) ≤ start(a)
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Reified Constraints� Use control variable b∈{0,1}
c ↔ b=1� Propagate� c holds� ⇒ propagate b=1� ¬c holds ⇒ propagate b=0� b=1 holds ⇒ propagate c� b=0 holds ⇒ propagate ¬c
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Reified Constraints� Use control variable b∈{0,1}
c ↔ b=1� Propagate� c holds� ⇒ propagate b=1� ¬c holds ⇒ propagate b=0� b=1 holds ⇒ propagate c� b=0 holds ⇒ propagate ¬c

not easy!
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Reification for Disjunction� Reify each precedence

[start(a) + dur(a) ≤ start(b)] ↔ b0=1
and

[start(b) + dur(b) ≤ start(a)] ↔ b1=1� Model disjunction

b0 + b1 ≥ 1
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Model Is Too Naive� Local view� individual task pairs� O(n2) propagators for n tasks� Global view ("global" constraints)� all tasks on resource� single propagator� smarter algorithms possible
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Example: Edge Finding� Find ordering among tasks (“edges”)� For each subset of tasks {a}∪B� assume: a before B
deduce information for a and B� assume: B before a
deduce information for a and B� join computed information� can be done in O(n2)
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Summary� Modelling� easy but not always efficient� constraint combinators (reification)� global constraints� smart heuristics� More on constraint-based scheduling
Baptiste, Le Pape, Nuijten. Constraint-based
Scheduling, Kluwer, 2001.



ExcursionStrong Propagation
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SMM: Strong Propagation
MONEY= MORE+ SEND
10652= 1085+ 9567
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Example: Distinct Propagator� Infeasible: decomposition� O(n2) disequality propagators� Naive distinct propagator� wait until variable becomes assigned� remove value from all other variables� Strong distinct propagator� only keep values appearing in a solution to constraint� essential for many problems
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Distinct Propagator: Hall Sets� Direct approach: Hall sets� Van Beek, Quimper, et. al. [CP 2004]� Set {x1, ..., xn} of variables Hall set, iff set of 
values s(x1) ∪ ... ∪ s(xn) has cardinality n� Pruning� find Hall set H� prune values in H from all other variables
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Strong Distinct Propagator� Can be propagated efficiently� O(n2.5) is efficient� breakthrough: Régin, A filtering algorithm for constraints 
of difference in CSPs, AAAI 1994.� Uses graph algorithms� insight on problem structure� relation between solutions of constraint and properties of 
graph
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Régin's Approach� Construct a variable-value graph� bipartite graph: variable nodes � value nodes� Characterize solutions in graph� maximal matchings� Use matching theory� one matching can describe all matchings� Remove edges not representing solutions
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Variable Value Graph
x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

s(x0)={0,1}

s(x1)={1,2}

s(x2)={0,2}

s(x3)={1,3}

s(x4)={2,3,4,5}

s(x5)={5,6}
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Maximal Matching Are Solutions
x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

a(x0)=0

a(x1)=1

a(x2)=2

a(x3)=3

a(x4)=4

a(x5)=6
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Matching Theory� Edge e belongs to some matching �
for some arbitrary matching M:
either: e belongs to even

alternating path starting
at free node

or: e belongs to even
alternating cycle� [C. Berge, 1970] See Régin's paper
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Oriented Graph: Alternation
x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6
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Alternating Paths…
x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

� Only free node: 6� mark 6 � x5 � mark x5� 5� mark 5 � x4� mark x4� 4� Intuition: edges 
can be permuted
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Alternating Cycles…
x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

� Nodes in SCC
x0, x1, x2, 

0, 1, 2 � Mark joining edges� Intuition: variables 
take all values from 
SCC 
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All Marked Edges
x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6
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Edges Removed
x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

� Remove� 1 � x3� 2 � x4� 3 � x4� Keep� x3� 3� matched!� Edge removal� value removal
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Characterising Strength: Consistency� Domain-consistent propagator for constraint� every value appears in at least one solution of constraint� strongest possible propagation� Régin's method is domain-consistent� also known as: generalized arc consistency, ...� Bounds-consistent propagator for constraint� extremal values appears in solution of convex relaxation� depends on relaxation: integer versus real� weaker but cheaper yet relevant� confusion about variants...
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Global Constraints� Reasons for globality: decomposition...� semantic: ...not possible� operational: ...less propagation� algorithmic: ...less efficiency� Plethora available� scheduling, sequencing, cardinality, sorting, circuits, ...� systematic catalogue with hundreds available...� difficult to pick the right one (consistency versus 
efficiency, etc)



Trends and State of the Art
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Trends and State of The Art� Focus here� constraints for combinatorial problems

ignoring� programming languages, graphics, databases, 
tractability, complexity, ...� Up-to-date overview

Handbook of Constraint Programming
Rossi, van Beek, Walsh, eds., Elsevier, 2006.
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Modelling� Symmetry breaking� Implied constraints� Variable domains� Soft constraints� Modelling languages� ...
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Symmetry Breaking� Absolutely essential� just search for single solution, ignore symmetric solutions� drastically prunes search space� without, most problems can not be solved� Key questions� how to find symmetries automatically?� class of symmetries: value, variable symmetries?� how to break them (rule out symmetric solutions)?� how many to break (all typically to expensive)?� break them statically or dynamically?� break them during search?
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Implied Constraints� Absolutely essential� find constraints that are semantically implied� yet provide essential propagation� Key questions� how to find them?� manual versus automatic?� how to propagate them?
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Variable Domains� Finite sets, multisets, intervals, ...� Often help to avoid symmetries (sets)� Typically require approximation� full set representation: exponential time and space� bounds approximation: describe by glb and lub� Key questions� total ordering for symmetry breaking?� efficient representations?� efficient and strong propagators for global constraints?
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Soft Constraints� Important to capture inconsistent models� as they tend to be in practice� Devise new framework� generalize propagation to cater for softness� Remain in same framework� propagators that propagate according to degree of 
violation� ...
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Modelling Languages� Fundamental difference to LP and SAT� language has structure (global constraints)� different solvers support different constraints� In its infancy� Key questions:� what level of abstraction?� solving approach independent: LP, SAT, CP, ...?� how to map to different systems?
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Solving� Automatic solving ("black box" solvers)� Constraint-based local search� Hybrid approaches� Constraint programming systems� Global constraints� ...
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Automatic Solving� Modelling is very difficult for CP� requires lots of knowledge and tinkering� very different from SAT� How to automatize� restart search?� automatic symmetric breaking?� new idea, promising first ideas and approaches?� to which extent possible?
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Constraint-based Local Search� Local search� operate on assignments not necessarily solutions� find "good" assignments� Use constraints as abstractions to model and 
solve with local search� Derive implementations automatically from 
constraints� Hybrid approaches?� Very promising� check out Comet: www.comet-online.org
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Hybrid Approaches� Operations research methods� Key issue: CP poor for optimization� Key questions� relaxations to obtain bounds?� column generation?� Benders decomposition?� cuts?� Extremely important for practical problems
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Global Constraints� Ever more! Ever more?� Key questions� what are the essential primitive ones?� how to characterize them?� how to automatically get an implementation?
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Constraint Programming Systems� Essential for initial and continuing success� Two approaches� library-based: ILOG Solver, Koalog, Choco, Gecode, ...� language-based: SICStus Prolog, Eclipse, Oz, ...� Key questions� parallelism� efficiency� robustness� automatic� coverage



Summary
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Constraint Programming� Powerful approach for modelling and solving 
combinatorial problems� Key aspect: middleware for� powerful algorithmic components� essential extra constraints� Key issues: modelling, propagation, search� Widely used but modelling is challenging


