Constraint Programming

Introduction, State of the Art \& Trends

Christian Schulte

cschulte@kth.se

Department of Electronic, Computer and Software Systems School of Information and Communication Technology KTH - Royal Institute of Technology
Sweden

Talk Overview

- What is Constraint Programming?

Sudoku is Constraint Programming

- ... more later

Sudoku

...is Constraint Programming!

Sudoku

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

- Assign blank fields digits such that: digits distinct per rows, columns, blocks

Sudoku

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

- Assign blank fields digits such that: digits distinct per rows, columns, blocks

Sudoku

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

- Assign blank fields digits such that: digits distinct per rows, columns, blocks

Sudoku

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

- Assign blank fields digits such that: digits distinct per rows, columns, blocks

Block Propagation

- No field in block can take digits 3,6,8

Block Propagation

$1,2,4,5,7,9$	$\mathbf{8}$	$1,2,4,5,7,9$
$1,2,4,5,7,9$	$\mathbf{6}$	$\mathbf{3}$
$1,2,4,5,7,9$	$1,2,4,5,7,9$	$1,2,4,5,7,9$

- No field in block can take digits 3,6,8
- propagate to other fields in block
- Rows and columns: likewise

Propagation

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

- Prune digits from fields such that: digits distinct per rows, columns, blocks

Propagation

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

- Prune digits from fields such that: digits distinct per rows, columns, blocks

Propagation

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

- Prune digits from fields such that: digits distinct per rows, columns, blocks

Propagation

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

- Prune digits from fields such that: digits distinct per rows, columns, blocks

Iterated Propagation

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

- Iterate propagation for rows, columns, blocks
- What if no assignment: search... later

Sudoku is Constraint Programming

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

- Variables: fields
- take values: digits
- maintain set of possible values
- Constraints: distinct
- relation among variables
- Modelling: variables, values, constraints
- Solving: propagation, search

Constraint Programming

- Variable domains
- finite domain integer, finite sets, multisets, intervals, ...
- Constraints
- distinct, arithmetic, scheduling, graphs, ...
- Solving
- propagation, branching, exploration, ...
- Modelling
- variables, values, constraints, heuristics, symmetries, ...

Remainder Overview

- Key ideas and principles
- constraint propagation
- search: branching and exploration
- Why does constraint programming matter
- State of the art and trends
- Excursions
- constraint propagation revisited
- scheduling resources
- strong propagation

Key Ideas and Principles

Running Example: SMM

- Find distinct digits for letters, such that

SEND

+ MORE
$=$ MONEY

Constraint Model for SMM

- Variables:

S,E,N,D,M,0,R,Y $\in\{0, \ldots, 9\}$

- Constraints:

$$
\begin{aligned}
& \text { distinct }(S, E, N, D, M, 0, R, Y) \\
& +\quad 1000 \times S+100 \times E+10 \times N+D \\
& +\quad 1000 \times M+100 \times 0+10 \times R+E \\
& =10000 \times M+1000 \times 0+100 \times N+10 \times E+Y \\
& S \neq 0 \quad M \neq 0
\end{aligned}
$$

Solving SMM

- Find values for variables

such that

all constraints satisfied

Finding a Solution

- Compute with possible values
- rather than enumerating assignments
- Prune inconsistent values
- constraint propagation
- Search
- branch:
- explore:
define search tree
explore search tree for solution

Constraint Propagation

Important Concepts

- Constraint store
- Propagator
- Constraint propagation

Constraint Store

$$
x \in\{3,4,5\} \quad y \in\{3,4,5\}
$$

- Maps variables to possible values

Constraint Store

finite domain constraints

$$
x \in\{3,4,5\} \quad y \in\{3,4,5\}
$$

- Maps variables to possible values
- Others: finite sets, intervals, trees, ...

Propagators

- Implement constraints

$$
\begin{aligned}
& \text { distinct }\left(x_{1}, \ldots, x_{n}\right) \\
& x+2 x y=z
\end{aligned}
$$

Propagators

- Amplify store by constraint propagation

Propagators

$\mathbf{x} \geq \mathbf{y} \quad \mathrm{y}>3$

$x \in\{4,5\} \quad y \in\{4,5\}$

- Amplify store by constraint propagation

Propagators

$$
x \in\{4,5\} \quad y \in\{4,5\}
$$

- Amplify store by constraint propagation
- Disappear when done (subsumed, entailed)
- no more propagation possible

Propagators

$x \geq y$
 $$
x \in\{4,5\} \quad y \in\{4,5\}
$$

- Amplify store by constraint propagation
- Disappear when done (subsumed, entailed)
- no more propagation possible

Propagation for SMM

- Results in store
$S \in\{9\} \quad E \in\{4, \ldots, 7\} \quad N \in\{5, \ldots, 8\} \quad D \in\{2, \ldots, 8\}$
$M \in\{1\} \quad O \in\{0\} \quad R \in\{2, \ldots, 8\} \quad Y \in\{2, \ldots, 8\}$
- Propagation alone not sufficient!
- create simpler sub-problems
- branching

Search

Important Concepts

- Branching
- Exploration
- Branching heuristics
- Best solution search

Search: Branching

- Create subproblems with additional information
- enable further constraint propagation

Example Branching Strategy

- Pick variable x with at least two values
- Pick value n from domain of x
- Branch with

$$
x=n \quad \text { and } \quad x \neq n
$$

- Part of model

Search: Exploration

- Iterate propagation and branching
- Orthogonal: branching \leftrightarrows exploration
- Nodes:
- Unsolved • Failed • Succeeded

SMM: Solution

Heuristics for Branching

- Which variable
- least possible values (first-fail)
- application dependent heuristic
- Which value
- minimum, median, maximum

$$
x=m \quad \text { or } \quad x \neq m
$$

- split with median m

$$
x<m \quad \text { or } \quad x \geq m
$$

- Problem specific

SMM: Solution With First-fail

Send Most Money (SMM++)

- Find distinct digits for letters, such that

$$
\begin{aligned}
& \text { SEND } \\
& +\quad \text { MOST } \\
& \hline=\text { MONEY } \\
& \text { and MONEY maximal }
\end{aligned}
$$

Best Solution Search

- Naïve approach:
- compute all solutions
- choose best
- Branch-and-bound approach:
- compute first solution
- add "betterness" constraint to open nodes
- next solution will be "better"
- prunes search space

Branch-and-bound Search

Find first solution

Branch-and-bound Search

- Explore with additional constraint

Branch-and-bound Search

- Explore with additional constraint

Branch-and-bound Search

Guarantees better solutions

Branch-and-bound Search

Guarantees better solutions

Branch-and-bound Search

- Last solution best

Branch-and-bound Search

- Proof of optimality

Modelling SMM++

- Constraints and branching as before
- Order among solutions with constraints
- so-far-best solution $\mathrm{S}, \mathrm{E}, \mathrm{N}, \mathrm{D}, \mathrm{M}, \mathrm{O}, \mathrm{T}, \mathrm{Y}$
- current node $\quad \mathbf{S}, \mathbf{E}, \mathbf{N , D , M , O , T , Y}$
- constraint added

$$
10000 \times \mathrm{M}+1000 \times 0+100 \times \mathrm{N}+10 \times \mathrm{E}+\mathrm{Y}
$$

<
$10000 \times \mathrm{M}+1000 \times 0+100 \times \mathrm{N}+10 \times \mathrm{E}+\mathrm{Y}$

SMM++: Branch-and-bound

SMM++: All Solution Search

Summary: Key Ideas and Principles

- Modelling

- variables with domiain
- constraints to state relations
- branching strategy
- solution ordering
- Solving
- constraint propagation
- constraint branching
- search tree exploration

Excursion
Constraint Propagation
Revisited

Constraint Propagation

- Variables (as members of store)
- feature variable domain (here: finite set of integers)
- Propagators
- implement constraints
- Propagation loop
- execute propagators until simultaneous fixpoint

Propagator

- Propagator p is procedure
- implements constraint con(p) its semantics (set of tuples)
- computes on set of variables $\operatorname{var}(p)$
- Execution of propagator p
- narrows domains of variables in $\operatorname{var}(p)$
- signals failure

Propagators Are Intensional

- Propagators implement narrowing
- also: filtering, propagation, domain reduction
- No extensional representation of con(p)
- impractical in most cases (space)
- Extensional representation of constraint
- can be provided by special propagator
- often: "element" constraint, "relation" constraint, ...

Propagator Properties

- Propagator p is
- correct: no solution of con (p) is removed
- assignment complete: failure at latest for assignments
- compatibility with search
- Propagator p is
- contracting: variable domains are narrowed
- monotonic: application to smaller domains will result in smaller domains than application to larger domains

Propagation Loop

- Largest simultaneous fixpoint of propagators
- fixpoint: propagators cannot narrow any further
- largest: no solutions lost
- Guaranteed
- termination:
domains finite propagators contracting
- largest fixpoint: propagators monotonic

Detailed study with proofs: [Apt 00]

Fix and Runnable Propagators

- Propagator is either
- fix: has reached fixpoint
- runnable: not known to have reached fixpoint
- Propagation loop maintains propagator sets
- all propagators

Prop

- runnable propagators Run
- initially

Run := Prop

Sketch of Propagation Loop

while (Run $\neq \varnothing$) \{
pick and remove p from Run; execute p; ModVar $:=\{x \mid x$ modified by $p\}$; DepProp := $\{q \mid x \in \operatorname{var}(q), x \in$ ModVar $\}$; Run := join(DepProp, Run);
\}

Sketch of Propagation Loop

while (Run $=\varnothing$) \{ pick and remove p from Run; execute p; ModVar : $=\{x \mid x$ modified by $p\}$; DepProp := $\{q \mid x \in \operatorname{var}(q), x \in$ ModVar $\}$; Run := join(DepProp, Run);
\}

Loop invariant:
 p is fix $\Leftrightarrow p \in$ (Prop-Run)

Sketch of Propagation Loop

while (Run $=\varnothing$) \{
pick and remove p from Run; execute p; ModVar : $=\{x \mid x$ modified by $p\}$; DepProp := $\{q \mid x \in \operatorname{var}(q), x \in$ ModVar $\}$; Run := join(DepProp, Run);
\}
Termination (Run= \varnothing):
p is fix $\Leftrightarrow p \in$ Prop

Sketch of Propagation Loop

while (Run $=\varnothing$) \{
pick and remove p from Run; execute p; ModVar : $=\{x \mid x$ modified by $p\}$; DepProp := $\{q \mid x \in \operatorname{var}(q), x \in$ ModVar $\}$; Run := join(DepProp, Run);
\}
Ignored: failure (signaled by p)

Implementing ModV ar and DepProp

- Variable-centered approach
- each variable x knows dependent propagators
- typically organized as list (suspension list)
- propagator p included in list of $x \Leftrightarrow x \in \operatorname{var}(p)$
- Upon propagator creation
- propagator subscribes to its variables
- becomes runnable

Propagators \Rightarrow Variables

- Propagators know their variables
- to perform domain modifications
- passed as parameters to propagator creation

Variables \Rightarrow Propagators

- Variables know dependent propagators
- to perform efficient computation of dependent propagators

Modifying a Variable

- Traverse suspension list
- add propagators to Run
- Optimization
- mark runnable propagators
- that is: propagators already in Run
- Multiple variable modification by propagator
- explicitly maintain ModVar (as in model)
- only after propagator execution: process ModVar
- suspension list traversed only once per variable

Idempotent Propagators

- Idempotent propagator
- always computes fixpoint
- Propagation loop perspective
- no need to include in Run
- more efficient: saves one invocation of propagator
- Propagator perspective
- must compute fixpoint itself
- more efficient: specific method for computing fixpoint
- might be more challenging

Propagator Entailment

- Propagator will never contribute anything
- fixpoint property preserved by narrowing
- Delete propagator, if entailment detected
- remove from suspension-list, or
- mark as dead, delegate removal to garbage collection

Summary: Constraint Propagation

Revisited

- Variables
- domain, suspension list
- Propagators
- intensional, correct, contracting, monotone, ...
- know variables for narrowing
- Propagation loop
- computes largest simultaneous fixpoint

Why Does Constraint Programming Matter

Widely Applicable

- Timetabling
- Scheduling
- Crew rostering
- Resource allocation
- Workflow planning and optimization
- Gate allocation at airports
- Sports-event scheduling
- Railroad: track allocation, train allocation, schedules
- Automatic composition of music
- Genome sequencing
- Frequency allocation

Draws on Variety of Techniques

- Artificial intelligence
- basic idea, search, ...
- Operations research
- scheduling, flow, ...
- Algorithms
- graphs, matching, networks, ...
- Programming languages
- programmability, extensionability, ...

Essential Aspect

- Compositional middleware for combining
- smart algorithmic
- problem substructures
components (propagators)
- scheduling
- graphs
- flows
plus
- essential extra constraints

Significance

- Constraint programming identified as a strategic direction in computer science research
[ACM Computing Surveys, December 1996]

Excursion
 Scheduling Resources

- Modelling
- Propagation
- Strong propagation

Scheduling Resources: Problem

- Tasks
- duration
- resource
- Precedence constraints
- determine order among two tasks
- Resource constraints
- at most one task per resource [disjunctive, non-preemptive scheduling]

Scheduling: Bridge Example

Scheduling: Solution

- Start time for each task
- All constraints satisfied
- Earliest completion time
- minimal make-span

Scheduling: Model

- Variable for start-time of task a
start(a)
- Precedence constraint: a before b
start $(a)+\operatorname{dur}(a) \leq \operatorname{start}(b)$

Propagating Precedence

a before b

$\operatorname{start}(a) \in\{0, \ldots, 7\}$
$\operatorname{start}(b) \in\{0, \ldots, 5\}$

Propagating Precedence

a before b

$\operatorname{start}(a) \in\{0, \ldots, 7\}$
$\operatorname{start}(b) \in\{0, \ldots, 5\}$

$\operatorname{start}(a) \in\{0, \ldots, 2\}$
$\operatorname{start}(b) \in\{3, \ldots, 5\}$

Scheduling: Model

- Variable for start-time of task a
start(a)
- Precedence constraint: a before b
$\operatorname{start}(a)+\operatorname{dur}(a) \leq \operatorname{start}(b)$
- Resource constraint:
a before b
or
b before a

Scheduling: Model

- Variable for start-time of task a
start(a)
- Precedence constraint: a before b
$\operatorname{start}(a)+\operatorname{dur}(a) \leq \operatorname{start}(b)$
- Resource constraint:

$$
\operatorname{start}(a)+\operatorname{dur}(a) \leq \operatorname{start}(b)
$$

or
b before a

Scheduling: Model

- Variable for start-time of task a
start(a)
- Precedence constraint: a before b
$\operatorname{start}(a)+\operatorname{dur}(a) \leq \operatorname{start}(b)$
- Resource constraint:

$$
\operatorname{start}(a)+\operatorname{dur}(a) \leq \operatorname{start}(b)
$$

or
$\operatorname{start}(b)+\operatorname{dur}(b) \leq \operatorname{start}(a)$

Reified Constraints

- Use control variable $b \in\{0,1\}$

$$
c \quad \leftrightarrow \quad b=1
$$

- Propagate
- cholds.
- $\neg c$ holds
- $b=1$ holds
- $b=0$ holds
$\Rightarrow \quad$ propagate $b=1$
\Rightarrow propagate $b=0$
\Rightarrow propagate c
\Rightarrow propagate $\neg c$

Reified Constraints

- Use control variable $b \in\{0,1\}$

$$
c \quad \leftrightarrow \quad b=1
$$

- Propagate
- cholds.
- $\neg c$ holds
- $b=1$ holds
- $b=0$ holds

$$
\begin{array}{ll}
\Rightarrow & \mathrm{p}
\end{array} \quad \text { not easy! }
$$

Reification for Disjunction

- Reify each precedence
$[\operatorname{start}(a)+\operatorname{dur}(a) \leq \operatorname{start}(b)] \leftrightarrow b_{0}=1$
and
$[\operatorname{start}(b)+\operatorname{dur}(b) \leq \operatorname{start}(a)] \leftrightarrow b_{1}=1$
- Model disjunction

$$
b_{0}+b_{1} \geq 1
$$

Model Is Too Naive

- Local view
- individual task pairs
- $O\left(n^{2}\right)$ propagators for n tasks
- Global view ("global" constraints)
- all tasks on resource
- single propagator
- smarter algorithms possible

Example: Edge Finding

- Find ordering among tasks ("edges")
- For each subset of tasks $\{a\} \cup B$
- assume: a before B deduce information for $\quad a$ and B
- assume: B before a deduce information for a and B
- join computed information
- can be done in $O\left(n^{2}\right)$

Summary

- Modelling
- easy but not always efficient
- constraint combinators (reification)
- global constraints
- smart heuristics
- More on constraint-based scheduling

Baptiste, Le Pape, Nuijten. Constraint-based Scheduling, Kluwer, 2001.

Excursion

Strong Propagation

SMM: Strong Propagation

Example: Distinct Propagator

- Infeasible: decomposition
- $\mathrm{O}\left(n^{2}\right)$ disequality propagators
- Naive distinct propagator
- wait until variable becomes assigned
- remove value from all other variables
- Strong distinct propagator
- only keep values appearing in a solution to constraint
- essential for many problems

Distinct Propagator: Hall Sets

- Direct approach: Hall sets
- Van Beek, Quimper, et. al. [CP 2004]
- Set $\left\{x_{1}, \ldots, x_{n}\right\}$ of variables Hall set, iff set of values $s\left(x_{1}\right) \cup \ldots \cup s\left(x_{n}\right)$ has cardinality n
- Pruning
- find Hall set H
- prune values in H from all other variables

Strong Distinct Propagator

- Can be propagated efficiently
- $\mathrm{O}\left(n^{2.5}\right)$ is efficient
- breakthrough: Régin, A filtering algorithm for constraints of difference in CSPs, AAAI 1994.
- Uses graph algorithms
- insight on problem structure
- relation between solutions of constraint and properties of graph

Régin's Approach

- Construct a variable-value graph
- bipartite graph: variable nodes \rightarrow value nodes
- Characterize solutions in graph
- maximal matchings
- Use matching theory
- one matching can describe all matchings
- Remove edges not representing solutions

Variable Value Graph

Maximal Matching Are Solutions

Matching Theory

- Edge e belongs to some matching \Leftrightarrow for some arbitrary matching M :
either: e belongs to even
alternating path starting
at free node
e belongs to even
alternating cycle
- [C. Berge, 1970] See Régin's paper

Oriented Graph: Alternation

Alternating Paths...

- Only free node: 6
- mark $6 \rightarrow x_{5}$
- mark $x_{5} \rightarrow 5$
- mark $5 \rightarrow x_{4}$
- mark $x_{4} \rightarrow 4$
- Intuition: edges can be permuted

Alternating Cycles...

- Nodes in SCC

$$
\begin{aligned}
& x_{0}, x_{1}, x_{2}, \\
& 0,1,2
\end{aligned}
$$

- Mark joining edges
- Intuition: variables take all values from SCC

All Marked Edges

Edges Removed

- Remove
$-1 \rightarrow x_{3}$
$-2 \rightarrow x_{4}$
$-3 \rightarrow x_{4}$
- Keep
$-x_{3} \rightarrow 3$
- matched!
- Edge removal

- value removal

Characterising Strength: Consistency

- Domain-consistent propagator for constraint
- every value appears in at least one solution of constraint
- strongest possible propagation
- Régin's method is domain-consistent
- also known as: generalized arc consistency, ...
- Bounds-consistent propagator for constraint
- extremal values appears in solution of convex relaxation
- depends on relaxation: integer versus real
- weaker but cheaper yet relevant
- confusion about variants...

Global Constraints

- Reasons for globality: decomposition...
- semantic:
- operational: ...less propagation
- algorithmic: ...less efficiency
- Plethora available
- scheduling, sequencing, cardinality, sorting, circuits, ...
- systematic catalogue with hundreds available...
- difficult to pick the right one (consistency versus efficiency, etc)

Trends and State of the Art

Trends and State of The Art

- Focus here
- constraints for combinatorial problems ignoring
- programming languages, graphics, databases, tractability, complexity, ...
- Up-to-date overview Handbook of Constraint Programming

Rossi, van Beek, Walsh, eds., Elsevier, 2006.

Modelling

- Symmetry breaking
- Implied constraints
- Variable domains
- Soft constraints
- Modelling languages

Symmetry Breaking

- Absolutely essential
- just search for single solution, ignore symmetric solutions
- drastically prunes search space
- without, most problems can not be solved
- Key questions
- how to find symmetries automatically?
- class of symmetries: value, variable symmetries?
- how to break them (rule out symmetric solutions)?
- how many to break (all typically to expensive)?
- break them statically or dynamically?
- break them during search?

Implied Constraints

- Absolutely essential
- find constraints that are semantically implied
- yet provide essential propagation
- Key questions
- how to find them?
- manual versus automatic?
- how to propagate them?

Variable Domains

- Finite sets, multisets, intervals, ...
- Often help to avoid symmetries (sets)
- Typically require approximation
- full set representation: exponential time and space
- bounds approximation: describe by glb and lub
- Key questions
- total ordering for symmetry breaking?
- efficient representations?
- efficient and strong propagators for global constraints?

Soft Constraints

- Important to capture inconsistent models
- as they tend to be in practice
- Devise new framework
- generalize propagation to cater for softness
- Remain in same framework
- propagators that propagate according to degree of violation

Modelling Languages

- Fundamental difference to LP and SAT
- language has structure (global constraints)
- different solvers support different constraints
- In its infancy
- Key questions:
- what level of abstraction?
- solving approach independent: LP, SAT, CP, ...?
- how to map to different systems?

Solving

- Automatic solving ("black box" solvers)
- Constraint-based local search
- Hybrid approaches
- Constraint programming systems
- Global constraints

Automatic Solving

- Modelling is very difficult for CP
- requires lots of knowledge and tinkering
- very different from SAT
- How to automatize
- restart search?
- automatic symmetric breaking?
- new idea, promising first ideas and approaches?
- to which extent possible?

Constraint-based Local Search

- Local search
- operate on assignments not necessarily solutions
- find "good" assignments
- Use constraints as abstractions to model and solve with local search
- Derive implementations automatically from constraints
- Hybrid approaches?
- Very promising
- check out Comet: www.comet-online.org

Hybrid Approaches

- Operations research methods
- Key issue: CP poor for optimization
- Key questions
- relaxations to obtain bounds?
- column generation?
- Benders decomposition?
- cuts?
- Extremely important for practical problems

Global Constraints

- Ever more! Ever more?
- Key questions
- what are the essential primitive ones?
- how to characterize them?
- how to automatically get an implementation?

Constraint Programming Systems

- Essential for initial and continuing success
- Two approaches
- library-based: ILOG Solver, Koalog, Choco, Gecode, ...
- language-based: SICStus Prolog, Eclipse, Oz, ...
- Key questions
- parallelism
- efficiency
- robustness
- automatic
- coverage

Summary

Constraint Programming

- Powerful approach for modelling and solving combinatorial problems
- Key aspect: middleware for
- powerful algorithmic components
- essential extra constraints
- Key issues: modelling, propagation, search
- Widely used but modelling is challenging

